M - OPEN NANO TOPOLOGICAL SPACES ISSN: 2776-0960 Nawras Hasan Mohammed Corresponding author Department of Mathematics College of Education for Pure Sciences, Tikrit University E-mail: nawras.h.mohammed@st.tu.edu.iq Ali A. Shihab Corresponding author Department of Mathematics College of Education for Pure Sciences, Tikrit University Prof. Dr. Ali Abdul Al Majeed Shihab, Lecturer Mathematics College of Education for Pure Science, Mathematics Department, University of Tikrit, P.O.Box, 42, Tikrit.Iraq draliabd@tu.edu.iq, ali.abd82@yahoo.com ## **Abstract** The objective of this paper is to present a new definition of Nano-open sets called Nano_M_open sets(M_N -OS) and study their components and features with some examples. To reach relations with many types of M_N -OS are studied. He also proved that the family of M_N -OSs forms a topology on universe set U is called Nano-M topological space($M_{N_{-}}TS$) on U. **Keywords:** Nano-open sets, Nano -M -open sets ### Introduction In 1963 Levine [1] establish the notion of semi-open sets. In 1985 Njastad [2] establish the notion of alpha-open sets, pre-open sets [3], δ -open set [4], θ -semi open set [5], Regular –open set [6], θ -open set [7].In 1983 Abd ElMonsef et al. [8] introduce the notion of β -open set. In 2013 Thivagar M. Lellis [9] introduce idea of Nano-topological space(N_TS) with respect to a subset *X* of universe *U* which is defined as an upper and lower approximation of X.Element of N_TS are called a Nano-open sets (N_OS).El-Maghrabi, A.I. and AL.Jahani Mohammad in 2011 [10] establish the notion of M —open set and we will know a new definition of Nanotopological space. ### **Preliminaries** A subset A of a space (X, τ) is called semi-open(Se_0.) [1] (resp. α -open(α _0.) [2], β -open(β _0.) [8], preopen (Pr_0.) [3], δ -open(δ _0.) [4], θ -open(θ _0.) [7], Regular-open(Re_0.) [6], θ - semi -open(θ _s_0.) [5]) set if $A \subseteq \text{cl}(\text{int}(A))\text{resp.}[A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ $A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))), \ A \subseteq \operatorname{int}(\operatorname{cl}(A)), A = \operatorname{int}_{\delta}(A), A = \operatorname{int}_{\theta}(A)$, $A = \operatorname{int}_{\theta}(A)$, $A = \operatorname{int}(\operatorname{cl}(A)), A \subseteq \operatorname{cl}(\operatorname{int}_{\theta}(A))$. The complement of Se_O (resp. α_- , β_- , Pr_, δ_- , θ_- , Re__, θ_- , O. set is said to be semi- closed(Se_C.)(resp. α_- , β_- , pre, δ_- , pre, δ_- , Regular-, θ_- , Regular-, θ_- , Regular-, θ_- , Re-, θ_- , Re-, θ_- , Re-, θ_- , Regular-, θ_- semi-) closure, is dented by $\operatorname{Scl}(A)$ [resp. α cl(A), β cl(A), $\operatorname{Pcl}(A)$, θ cl(A), cl **Definition 2.1 [9]:** U is a non-empty finite set of elements, called the universe and R be an equivalence relation on U named as the indiscernibility relation. The elements in the same class, are said to be indiscernible with one another. The binary (U,R) is called the approximation space. Let $X \subseteq U$ - **a)** $L_{R(X)} = \bigcup_{X \in U} \{R(X) : R(X) \subseteq X\}$ is the lower approximation of with respect to equivalence class R(X). - **b)** $U_R(X) = \bigcup_{X \in U} \{R(X) : R(X) \cap X \neq \emptyset\}$ is the upper approximation of X with respect to R(X). - **c)** $B_{R(X)} = U_{R(X)} L_{R(X)}$ is boundary region of X with respect to R(X). **Definition 2.2 [9]:** let U is the universe, R be an equivalence relation on U. $T_R(X) = \{U, \phi, L_{R(X)}, U_{R(X)}, B_{R(X)}\}, X \subseteq U. T_R(X)$ check axioms: - 1- $U \& \emptyset \in T_R(X)$. - **2-** The union of objects of any sub sets of $T_R(X)$ is $T_R(X)$. - 3- The intersection of the objects of any sub collection of $T_R(X)$ is $T_R(X)$. Thus $T_R(X)$ is topology on U, be called N_T. on U with respect to X. we call $(U, T_{R(X)})$ as the N_TS. The members of $T_R(X)$ be called a N_O. We note that, if $T_R(X)$ is N_T . on U, we get $\beta = \{U, L_{R(X)}, B_{R(X)}\}$ basis for $T_R(X)$. **Definition 2.3 [9]:** let $(U, T_R(X))$ is a N_TS. with respect to X, where $X \subseteq U$, $A \subseteq U$:1-Interior. Then the Nano-interior of A defined as the union of all N_O. subset of A and symbolized by Nint(A) that is Nint(A) is the largest N_O. subset of A. 2-Closure. The Nano-closure of A is the intersection of all N_C. sets containing A and denoted by Ncl(A) that is Ncl(A) is the smallest N_C. set containing A. **Definition 2.4 [9]:** let $(U, T_R(X))$ is N_TS., $A \subseteq U$, the A is - 1- Nano-Semi-open(NSe_0.)if $A \subseteq Ncl(Nint(A))$. - 2- Nano-pre-open(NPr_0.)ifA \subseteq int(Ncl(A)). - 3- Nano-δ-open (Nδ_0.)if $A \subseteq \overline{A_{\delta}^{\circ}}$.[4] - **4-** Nano-θ-semiopen(Nθ_S_0.) if $A \subseteq \overline{A_{\theta}^{\circ}}$.[4] **Definition 2.5 [9]:** let $(U, T_R(X))$ a N_TS., $A \subseteq U$, then A be called NSe_C. (NPr_C., N α _C., and NRe_C.) if its complement is NSe_O. (NPr_O.open, N α _O., and NRe_O.respectively). **Definition 2.6 [8]:** let $A \subseteq (U, T_R(X))$ is $N\beta_-O$. on U if $A \subseteq Ncl(Nint(Ncl(A)))$. The set of all $N\beta_-O$. sets of U denoted by $N\beta_-O(U, X)$. **Definition 2.7 [11]:** $T_R(X)$ is N_T . on U with respect to $X.A \subseteq U$ is Nano- θ -open denoted by $(N\theta_-O.)$ if for each $x \in A, \exists G$ is $N_-OS. \ni x \in G \subseteq Ncl(G) \subseteq A$. Diagram (1) Se_ 0.S Se_ 0.S Pr_ 0.S \rightarrow open set $\rightarrow \alpha_0$. S \rightarrow Pr_ 0.S \rightarrow β _0.S δ _0.S δ _0.S δ _0.S M-open set **Example 2.8:** Let $U = \{1,2,3,4\}$ with $\frac{U}{R} = \{\{1\},\{2,3\},\{4\}\}$ and $X = \{1,2\}$. Then $T_R(X) = \{U,\emptyset,\{1\},\{1,2,3\},\{2,3\}\},$ the N_C . sets are, $N_C(U,X) = \{U,\phi,\{4\},\{1,4\},\{2,3,4\}\}$ then $N_{\delta o}(U,X) = \{U,\emptyset,\{1\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\}\},N_{po}(U,x) = \{U,\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},$ {1,2,3}, {1,3,4}, {1,2,4}}, $T_R^{\alpha}(X) = \{U, \emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}\$ and $N_{Ro} =$ $\{U,\emptyset,\{1\},\{2,3\}\}$ then $T^\alpha_R(X)$ form topology on U, but $N_{\delta\sigma}(U,X)$ does not form topology on U, since $\{1,4\}$ and $\{2,3,4\}$ are NSe_0. sets but $\{1,4\} \cap \{2,3,4\} = \{4\} \notin$ $N_{\delta o}(U, X)$. Also $N_{po}(U, X)$ does not form topology on U. Since $\{1,3,4\}$ and $\{1,2,4\}$ are NPr_. 0.but $\{1,3,4\}\cap [1,2,4\}=\{1,4\}\not\in N_{po}(U,X)$ and $N_{Ro}(U,X)$ does not form topology on U. Since $\{1\}$ and $\{2,3\}$ are NRe_0.sets but $\{1\} \cup [2,3]$ are NRe_0. but $\{1\} \cup [2,3] = \{1,2,3\} \notin N_{Ro}(U,X).$ **Definition 2.9:** let $(U, T_R(X))$ is a N_TS. Then $A \subseteq U$ is Nano-M-open set in a N_TS. if $A \subseteq Cl_N(N \operatorname{int}_{\theta}(A) \cup \operatorname{int}_N(N Cl_{\delta}(A))$ briefly M_N -0. **Definition 2.10 [12]:** let N int_{\theta} = \cup \{B \in T_N : \overline{B_N} \subseteq A such that $x \in B \in T_N$ }. **Definition 2.11 [4]:** let N Cl_{\theta} = \cup \{x \in U : \overline{B_N}^\circ \cap A \neq \text{ such that } B \in T_N, x \in B\} Remark 2.12 [10]: The opposite is not necessarily true as shown in the following examples. **Example 2.13:** let $X = \{1,2,3,4\}$ with $T = \{X, \emptyset, \{1\}, \{3\}, \{1,3\}\}$. We get $\{1\}$ is M-O. ,but not θ -Semi open. **Example 2.14:** let $X = \{\mathcal{P}, \hbar, \mathcal{G}\}$ and $T = \{X, \emptyset, \{\mathcal{P}\}, \{\hbar\}, \{\mathcal{P}, \hbar\}\}$. Then $\{\hbar, \mathcal{G}\}$ is an M-OS, but not δ -pre open. **Remark 2.15:** The intersection of any two M-O. sets is not M-O. So X = $\{\mathcal{P}, h, g\}, T = \{X, \emptyset, \{h\}, \{g\}\}\}$. Then $A = \{\mathcal{P}, g\}$ and $B = \{\mathcal{P}, h\}$ are M-O. sets, but $A \cap B = \{\mathcal{P}\}$ is not M-0. **Example 2.16:** Let $U = \{1,2,3,4\}$, $T_R(X) = \{U,\emptyset,\{1,2,3\}\}$, $T_R^C(X) = \{\emptyset,U,\{4\}\}$. | A | $\overline{\mathbf{A_N}}$ | $\mathbf{A_N^{\circ}}$ | $\operatorname{Nint}_{\theta}(\operatorname{N}_{\operatorname{o}_{\theta}})$ | $\overline{\mathrm{Nint}_{\theta}} \overline{(\mathrm{N}_{\mathrm{o}_{\theta}})}$ | $\text{Cl}_{\delta}(A)$ | $Nint(NCl_{\delta})$ | |-----|---------------------------|------------------------|--|--|-------------------------|----------------------| | 1 | U | Ø | Ø | Ø | 1 | Ø | | 2 | U | Ø | Ø | Ø | 2 | Ø | | 3 | U | Ø | Ø | Ø | 3 | Ø | | 4 | 4 | Ø | Ø | Ø | 4 | Ø | | 12 | U | Ø | Ø | Ø | 12 | Ø | | 13 | U | Ø | Ø | Ø | 13 | Ø | | 14 | U | Ø | Ø | Ø | 14 | Ø | | 23 | U | Ø | Ø | Ø | 23 | Ø | | 24 | U | Ø | Ø | Ø | 24 | Ø | | 34 | U | Ø | Ø | Ø | 34 | Ø | | 123 | U | 123 | Ø | Ø | 123 | 123 | | 124 | U | Ø | Ø | Ø | 124 | Ø | | 234 | U | Ø | Ø | Ø | 234 | Ø | | 134 | U | Ø | Ø | Ø | 134 | Ø | | U | U | U | U | U | U | U | | Ø | Ø | Ø | Ø | Ø | Ø | Ø | $\{1\} \subseteq \emptyset \cup \emptyset = \emptyset$ $$\{1,2,3\} \subseteq \emptyset \cup \{1,2,3\} = \{1,2,3\} \cup U \cup U, then\{\emptyset,U,\{1,2,3\}\} = M - N_o$$ **Example 2.17:** Let $U = \{a, b, c, d, e\}$ $$U/R = \{\{b\}, \{a, b, e\}, \{a, e\}\}, X = \{b, e\}$$ $$T = \{U, \emptyset, \{b\}, \{a, b, e\}, \{a, e\}\}, L_R = \{b\}$$ $$U_R = U\{R_{(X)} \cap X \neq \emptyset\} = \{a, b, e\}$$ $B = U_R - L_R = \{a, e\}$. In the same way in the above example ,the following solution can be reached $T_{R(X)} = \{\emptyset, U, \{b\}, \{a, b, e\}, \{a, e\}\}$ $$T_{R(X)}^{C} = \{U, \emptyset, \{a,c,d,e\}, \{c,d\}, \{b,c,d\}\}\}. \text{ Then } M-N_o = \{\emptyset, \{U, \{a\}, \{b\}, \{a,e\}, \{a,b,e\}\}, \{a,c,d,e\}, \{b,c,d\}\}\}$$ **Remark 2.18:** Every N-OS is M_N -O. **Result:** Nano open $\overrightarrow{\leftarrow}$ M_N-0. set. Diagram (2) $N_{s}\text{-open set}$ $NRe_O. \longrightarrow N_O. \longrightarrow N\alpha_O. \longrightarrow NPr_O. \longrightarrow N\beta_O.$ $N\delta_O.$ $N\theta_O. \longrightarrow N\theta_{S}_O. \longrightarrow M_{N}\text{-}O$ **Proposition 2.19:** A subset A of $(U, T_R(X))$ then: - 1- Every $N\theta_{S}$ _0. is M_N -0. set. - **2-** Every δ_{Np} -open set is M_N -O. **Proof:** (1) suppose that A is N0_0. set by (Remark 2.10) A is δ_N -open set and A is N0_S_0. set. Hence, $A \subseteq \operatorname{int}_N\left(\operatorname{Cl}_{N_\delta}(A)\right)$ and $A \subseteq \operatorname{Cl}_{N_\delta}\left(\operatorname{int}_N\operatorname{semi}(A)\right)$ then $A \subseteq \overline{A_{\theta_\delta}^\circ} \cup \overline{A_\delta^\circ}$. By definition 2.1 we get A is M_N-0. set. (2) suppose that A is N0_0., since we know N0_0. are N\delta_0.\delta_N\text{N0_S_0}. by (Remark 2.25). N0_0. Set is N\text{N0_S_0}. & N\delta_0. is δ_{Np} -open set by definition N\theta_0. and δ_{Np} we get $A \subseteq \overline{A_\theta^\circ}$ and $A \subseteq \overline{A_\delta^\circ}$ then $A \subseteq \overline{A_\theta^\circ} \cup \overline{A_\delta}$ and A is M_N-0. set. **Proposition 2.20:** If A is an M_N -O.of a $\left(U,T_R(X)\right)$ & We get A is δ_{Np} -open **Proof:** Let A be M_N -0., since $A_{\theta}^{\circ} = \emptyset \Longrightarrow \overline{A_{\theta}^{\circ}} = \overline{\emptyset} = \emptyset$. Hence, $A \subseteq \overline{A_{\delta}^{\circ}} \cup \emptyset = \overline{A_{\delta}^{\circ}}$ we get $A \subseteq \overline{A_{\delta}^{\circ}}$. Then A is δ_{Np} -open. **Lemma 2.21:** Let $(U, T_R(X))$ be a N_TS. Then:1- union of arbitrary M_N -OS.s is M_N -O. 2- intersection of arbitrary M_N -CS.s is M_N -C. # **Proof:** 1- $\{A_i, i \in I\}$ is collection of M_N -O.set. We get $A_i \subseteq Cl_N(Nint_{\theta}(A_i)) \cup int_N(NCl_{\delta}(A_i))$, such that $$\bigcup_{i} A_{i} \subseteq \bigcup_{i} \left(\operatorname{Cl}_{N}(\operatorname{N} \operatorname{int}_{\theta}(A_{i})) \right) \cup \operatorname{int}_{N}(\operatorname{NCl}_{\delta}(A_{i})) \\ \subset \operatorname{Cl}_{N} \operatorname{N} \operatorname{int}_{\theta}(\bigcup_{i} A_{i}) \cup \operatorname{int}_{N}(\operatorname{NCl}_{\delta}(\bigcup_{i} A_{i}))$$ $\forall i \in I \rightarrow \cup_i A_i \text{ is } M_N - 0.$ $\begin{array}{ll} \text{2-} & \{A_i, i \in I\} \text{ collection of } M_N\text{-C.} \text{ . So } A_i \subseteq \text{Cl}_N\big(\text{Nint}_\theta(A_i)\big) \cap \text{int}_N\big(\text{NCl}_\delta(A_i)\big), \\ \text{when} & \cap_i A_i \subseteq \cap_i \big(\text{Cl}_N(\text{N int}_\theta(A_i))\big) \cap \text{int}_N\big(\text{NCl}_\delta(A_i)\big) \subset \text{Cl}_N \text{N int}_\theta(\cap_i A_i) \cap \text{int}_N\big(\text{NCl}_\delta(\cap_i A_i)\big), \\ \forall i \in I, \text{Thus } \cap_i A_i \text{ is } M_N\text{-closed}. \\ \end{array}$ **Remark 2.22:** intersection of any two M_N -OS.s is not M_N -O. From above example if $U = \{1,2,3\}$, $T_R(X) = \{x,\emptyset,\{2\},\{3\},\{2,3\}\}$. Then $A = \{1,3\}$ and $B = \{1,2\}$ are M_N -open sets. But $A \cap B = \{1\}$ not M_N -open. **Definition 2.23:** let $A \subseteq X$. The union of δ -pre open sets contained in A is called the δ -pre-interior (Pint $_{\delta}(A)$). **Theorem 2.24:** Let $(U, T_R(X))$ be N-TS. & $A \subset U$. Then the following data are equivalent: - (1) A is an M_N -0. set. - (2) $A = N_{\delta}int_{\theta}(A) \cup NPint_{\delta}(A)$ **Proof:** (1) \rightarrow (2). A is M_N -OS. We get $A \subseteq Cl_N(N \operatorname{int}_{\theta}(A)) \cup \operatorname{int}_N(N \operatorname{Cl}_{\delta}(A))$. Hence by proposition 2.26 and lemma 2.27 $$\begin{split} \delta \mathrm{int}_{\theta}(A) \cup \mathrm{Pint}_{\delta}(A) &= (A \cap \mathrm{Cl}_{N}\big(\mathrm{N} \ \mathrm{int}_{\theta}(A)\big) \cup (A \cap \mathrm{int}_{N}\big(\mathrm{N} \ \mathrm{Cl}_{\delta}(A)\big) \\ &= A \cap \mathrm{Cl}_{N}\big(\mathrm{N} \ \mathrm{int}_{\theta}(A)\big) \cup \mathrm{int}_{N}\big(\mathrm{N} \ \mathrm{Cl}_{\delta}(A)\big) = A \end{split}$$ $(2) \rightarrow (1)$. Suppose that $A = \delta int_{\theta}(A) \cup Pint_{\delta}(A)$, then by proposition 2.19 and lemma 2.21 $A = (A \cap \operatorname{Cl}_N (\operatorname{N} \operatorname{int}_{\theta}(A)) \cap \operatorname{int}_N (\operatorname{N} \operatorname{Cl}_{\delta}(A)) \subset \operatorname{Cl}_N (\operatorname{N} \operatorname{int}_{\theta}(A)) \cup \operatorname{int}_N (\operatorname{N} \operatorname{Cl}_{\delta}(A))$ Therefore, A is M_N-O. **Proposition 2.25:** Let $(U, T_R(x))$ be N-TS. & $A \subset X$. Then the data is equal: - 1- A is an M_N -CS. - 2- $A = N\delta \operatorname{Cl}_{\theta}(A) \cap \operatorname{Np} \operatorname{Cl}_{\delta}(A)$. **Proof:** $1 \to 2$. A is M_N -OS. Get $A \subseteq Cl_N(N \operatorname{int}_{\theta}(A)) \cap \operatorname{int}_N(N \operatorname{Cl}_{\delta}(A))$. Hence, by proposition 2.26 and lemma 2.27 $$N\delta \operatorname{int}_{\theta}(A) \cap \operatorname{Pint}_{\delta}(A) = (A \cap \operatorname{Cl}_{N}(\operatorname{N} \operatorname{int}_{\theta}(A)) \cap (A \cap \operatorname{int}_{N}(\operatorname{N} \operatorname{Cl}_{\delta}(A))$$ $$= A \cap \operatorname{Cl}_{N}(\operatorname{N} \operatorname{int}_{\theta}(A)) \cap \operatorname{int}_{N}(\operatorname{N} \operatorname{Cl}_{\delta}(A)) = A$$ (2) \to (1). Suppose that $A=N\delta$ int $_{\theta}(A)\cap Pint_{\delta}(A)$, then by proposition 2.19 and lemma 2.21 $A = (A \cap \operatorname{Cl}_N (\operatorname{N} \operatorname{int}_{\theta}(A)) \cap (A \cap \operatorname{int}_N (\operatorname{N} \operatorname{Cl}_{\delta}(A)) \subset \operatorname{Cl}_N (\operatorname{N} \operatorname{int}_{\theta}(A)) \cap \operatorname{int}_N (\operatorname{N} \operatorname{Cl}_{\delta}(A)).$ Therefore, A is M_N-O. **Lemma 2.26:** $A \subseteq (U, T_R(x))$, where - (1) $M_N Cl(A) = N\delta Cl_{\theta}(A) \cap Np Cl_{\delta}(A)$ - (2) $M_N int(A) = N\delta int_{\theta}(A) \cup p int_{\delta}(A)$. **Theorem 2.27:** Let $A \subset (U, T_R(x))$. we get 1-A is an M_N -OS. iff $A = M_N - int(A)$. 2-A is an M_N -CS. iff $A = M_N - Cl(A)$. **Proof:** 1- A is an M_N -OS. Get $A=N\delta$ int $_\theta(A)\cup Np$ int $_\delta(A)$ by using lemma 2.26, get $A=M_N-int(A)$ Conversely, $A = M_N - int(A)$, using lemma 2.21, $A = N\delta$ int_{θ}(A) \cup Np int_{δ}(A), by theorem 2.24, A is M_N -OS. 2-A is an M_N -CS, by theorem 2.24, $A = N\delta \operatorname{int}_{\theta}(A) \cap \operatorname{Np} \operatorname{int}_{\delta}(A)$ & lemma 2.21 we get $A = M_N - \operatorname{int}(A)$. Conversely, since $A = M_N - \operatorname{int}(A)$.by lemma 2.21, $A = N\delta \operatorname{int}_{\theta}(A) \cap \operatorname{Np} \operatorname{int}_{\delta}(A)$ & by theorem 2.24, $A \operatorname{is} M_N$ -CS. ### References - 1. N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly 70, pp.36-41, 1963. - 2. O. Njastad, "On some classes of nearly open sets", Pacific J. Math. 15, pp. 961-970, 1965. - 3. M. H. Stone, "Applications of the theory of Boolean rings to general topology", Trans.Amer. Math. Soc. 41(3), pp.375-481, 1937. - 4. V. Pankajam and K.Kavitha," δ -open sets and δ nano continuity in δ nano topological space", International Journal of Innovative Science and Research Technology, Vol.2,12, pp.110-118, 2017. - 5. M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri," θ -semiopen sets and separation axioms in topological spaces", (submitted). - 6. N. V. Velicko, "H-closed topological spaces", Amer. Math. Soc. Trans. 78, pp.103-118, 1968. - 7. M. Caldas, S. Jafari and M. M. Kovár, "Some properties of θ-open sets", Divulg. Mat. 12(2), pp.161-169, 2004. - 8. A. Refathy and I. Gnanambal, "On Nano β-open sets", Int. Jr. of engineering, contemporary Mathematics and Sciences. Volume 1, No 2, 2015. - 9. M. L. Thivagar, C. Rechard. "On Nano Forms of Weekly Open Sets". International Journal of Mathematics and Statistics Invention. Volume 1, No 1, pp.31-37, 2013. - 10. A.I. El-Maghrabi and M. AL-Juhani, "M-open sets in topological spaces", Pioneer Journal of Mathematics and Mathematical Sciences Vol.4, No,2, pp.213-230, 2011. - 11. C. Richard, "Studies on Nano topological spaces", Ph.D. Thesis, Madurai Kamaraj University, India, 2013. - 12. A. S. Mashhour, M. E. Abd EL-Monsef and S. N. EL-Deeb, "on pre-topological space", Bull. Math de la Soc. R.S. de Romaine, Volume 28, No 76, PP 39-45, 1984.