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Abstract

The objective of this paper is to present a new definition of Nano-open sets called
Nano_M_open sets(My-0S) and study their components and features with some
examples. To reach relations with many types of My-0S are studied. He also
proved that the family of My-0Ss forms a topology on universe set U is called
Nano-M topological space(My_TS) on U.
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Introduction

In 1963 Levine [1] establish the notion of semi-open sets. In 1985 Njastad [2]
establish the notion of alpha-open sets, pre-open sets [3], §-open set [4], 8-semi
open set [5], Regular —open set [6], 8-open set [7].In 1983 Abd ElMonsef et al. [8]
introduce the notion of f-open set. In 2013 Thivagar M. Lellis [9] introduce idea
of Nano-topological space(N_TS) with respect to a subset X of universe U which
is defined as an upper and lower approximation of X.Element of N_TS are called a
Nano-open sets (N_OS).El-Maghrabi, A.l. and AL.Jahani Mohammad in 2011 [10]
establish the notion of M —open set and we will know a new definition of Nano-
topological space.
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Preliminaries

A subset A of a space (X, 1) is called semi-open(Se_0.) [1] (resp. a-open(a_0.) [2],
p-open(f_0.) [8], preopen (Pr_0.) [3], §-open(6_0.) [4], B-open(6_0.) [7],
Regular-open(Re_0.) [6],0- semi -open(65_0.) [5]) set if AC
cl(int(A))resp.[A S int(cl(int(A)))

A € d(int(cl(4))), A <€ int(cl(4)),A = ints(A), A = intg(A) A=
int(cl(A)),A € cl(intg(A)).The complement of Se_O (resp. a_., f_, Pr_, 6_6_
Re_, 65_) O.setis said to be semi- closed(Se_C.)(resp. a-,5-, pre,6_0_Regular-,6s_)
closed set. Intersection of Se_C. (resp. a-, -, Pr_, 6-, 8-, Re-, 85_)C. sets continuing
Ais the semi- (resp. a-, -, pre, - closed, 8-, Regular-, 8- semi-) closure, is dented
byScl(A)[resp. acl(A), fcl(A), Pcl(A),0cl(A),Rcl(A),dclyg(A)]. The union of all
Se_O. (resp. «_0., p_0O., Pr_0., 6_0., 8_0., Re_0., 65_0.) sets contained in A is said
semi- (resp. a-, -, pre, 8-, 8-, Regular-, - semi -) interior, is briefly by Sint(A)
[aint, fint,Pint ,0int,Rint , §intg] (A) The sets of all Se_O. (resp. «¢_0O., 5_0., Pr_0O,,
6_0.,60_0., Re_0., 65_0.) setis briefly SO(X)[ resp. a0, O, P0,60,R0 ,60] (X).

Definition 2.1 [9]: U is a non-empty finite set of elements, called the universe and
R be an equivalence relation on U named as the indiscernibility relation. The
elements in the same class, are said to be indiscernible with one another. The
binary (U, R) is called the approximation space. Let X € U

a) Lrxy =Uxey {R(X): R(X) € X} is the lower approximation of with
respect to equivalence class R (X).

b) Ur(X) =Uxey {R(X): R(X) N X # @}is the upper approximation of X with
respect to R(X).

c) Brcxy = Urx) — Lr(x)is boundary region of X with respect to R(X).
Definition 2.2 [9]: let U is the universe, R be an equivalence relation on U.
Te(X) = {U, ¢, Lrx), Urxy, Breoy b X € U. Tr(X) check axioms:

1- U&®Q €E Tr(X).
2- The union of objects of any sub sets of Tz (X) is Tz (X).
3- The intersection of the objects of any sub collection of Tg (X) is T (X). Thus

Tr(X) is topology on U, be called N_T. on U with respect to X. we call (U, TR(X)) as
the N_TS. The members of T (X) be called a N_O.
We note that, if T (X) is N_T. on U, we get § = {U, Lrexy, BR(X)} basis for Tg (X).
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Definition 2.3 [9]: let (U, Tr(X)) is a N_TS. with respect to X, where X € U, A €
U:1-Interior. Then the Nano-interior of A defined as the union of all N_O. subset of
A and symbolized by Nint(A) that is Nint(A) is the largest N_O. subset of A. 2-
Closure. The Nano-closure of A is the intersection of all N_C. sets containing A and
denoted by Ncl(A) that is Ncl(A) is the smallest N_C. set containing A.

§ g © Definition 2.4 [9]: let (U, Ty ()) is N_TS., A € U, the Ais
:: _i; % 1- Nano-Semi-open(NSe_O.-)ifA;Ncl(Nint(A)).

2 5 -§ 2- Nano-pre-open(NPr_0.)ifA € int(Ncl(A)).

- ;_ 3- Nano-8-open (N8_0.)if A € A%.[4]

K <E E 4- Nano-8-semiopen(N8s_0.) if A € Ay.[4]

Definition 2.5 [9]: let (U, Tr(X)) a N_TS., A € U, then A be called NSe. (NPr_C,,
Na_C., and NRe_C.) if its complement is NSe_O. (NPr_O.open, Na_0O. and
NRe_O.respectively).

Definition 2.6 [8]: let A € (U, Tx(X))is NB_O.on U if A € Ncl(Nint(Ncl(A)). The
set of all N3_O. sets of U denoted by NO(U, X).

Definition 2.7 [11]: Tr(X) is N_T. on U with respect to X.A € U is Nano-6-open
denoted by (N6_0O.) if foreachx € A3 GisN_0S. 3 x € G € Ncl(G) € A.
Diagram (1)

y \ Se_0.S
BQ{—: (i?set — 0g.S — Pr_0.5— B_0.S
/ 6_0.S
6_0.5St— B85_0.S— M-open set

Example 2.8: Let U = {1,2,3,4} with — = {{1},{2,3},{4}} and X = {1,2}. Then
Tr(X) = {U, 0,{1},{1,2,3}, {2,3}}, the N_C. sets are, Nc(U,X) =
{U, d,{4},{1,4},{2,3,4}} then Nso (U, X) =
{U,8,{13,{1,4},{2,3},{1,2,3},{2,3 4]}, N, (U, ) =
{U,0,{1},{2},{3},{1,2},{1,3},{2,3},
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(1,2,3},{1,34},{1,24}},  T¢X) ={U,0,{1},{23},{1,23}} and  Ng, =
{U,0,{1},{2,3}} then T (X) form topology on U, but Ng,(U,X) does not form
topology on U, since {1,4} and {2,3,4} are NSe_O. sets but {1,4}n{2,3,4}= {4} ¢
Nso(U, X). Also Ny, (U, X) does not form topology on U. Since {1,3,4} and {1,2,4}
are NPr_.O.but {1,3,4} N [1,2,4} = {1,4} ¢ Npo (U, X) and Ng, (U, X) does not form
topology on U. Since {1} and {2,3} are NRe_O.sets but {1} U [2,3} are NRe_O. but
{1} U [2,3} = {1,2,3} € Ny, (U, X).

Definition 2.9: let (U, TR(X)) isa N_TS. Then A € Uis Nano-M-open setin a N_TS.
if A € Cly(N intg(A) U inty (N Cl5(A)) briefly My-O.

Definition 2.10 [12]: letNintg =U {B € Ty: By € A such thatx € B € Ty}.
Definition 2.11 [4]: let N Cls =U {x € U:By N A # @ such that B € Ty, x € B}

Remark 2.12 [10]: The opposite is not necessarily true as shown in the following
examples.

Example 2.13: let X = {1,2,3,4} with T = {X, 0, {1}, {3}, {1,3}} . We get {1} is M-O0.
,but not 6-Semi open.

Example 2.14: letX = {P,A,g}and T = {X, 0, {P}, {£},{P, A}}.Then {£, g} is an
M-OS, but not §-pre open.

Remark 2.15: The intersection of any two M-O. sets is not M-0. So X =
{P, 1,9}, T ={X 0 {4} {g}~A, ¢}}. ThenA = {P,g}and B = {P, A} are M-O. sets,
but AN B = {P}is not M-0.

Example 2.16: Let U = {1,2,3,4}, To(X) = {U, 8,{1,2,3}}, TS(X) = {9, U, {4}}.

1 U 0] 0] (0] 1 )
2 U ) @ @ 2 )
3 U () () (0] 3 ?
4 4 ) @ ) 4 )
12 U 0] 0] (0] 12 )
13 U 0] 0] 0] 13 )
14 U 0] () (0] 14 (1)
23 U 0] ) ) 23 )
24 U 0] () (0] 24 (1)
34 U ) ) 0] 34 )
123 U 123 0] (0] 123 123
124 U 0] 0] 0] 124 0]
234 U 0] () (0] 234 (]
134 U 0] ) 0] 134 ]
0] U 0] 0] u U U
) (0] ) ) ) @ )
{1}cpuod=0
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{123} cou{1,23}={1,23}Uc UU Uthen{®,U,{1,23}} =M —N,
Example 2.17: Let U = {a,b, ¢, d, e}
U/R = {{b}, {a,b, e}, {a, e}},X = {b, e}
T ={U,9,{b},{ab,e},{ae}}Lp = {b}
Ug = U{Rx) NX # 0} = {a,b, e}

B = Ug — Lg = {a, e}.In the same way in the above example ,the following solution
can be reached Tyx) = {8, U, {b},{a, b, e},{a, e}}

R(X) ={U, 0,{a,cd,e}{c,d}{b,cd}}. Then M —N,={0,{,U,{a},{b},{a, e}, {a b, e}
{a,c,d,e},{b,cd}}
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Result: Nano open < My-O. set.
Diagram (2)
N;-open set

‘NReOA/O—>NocO—>NPrO—>NBO

N60—> NO8s_ 0. — My-O
Proposition 2.19: A subset A of (U, T (X)) then:
1- Every NOBg_O. is My-O0. set.
2- Every 8yp-open set is My-0.
Proof: (1) suppose that A is NO_O. set by (Remark 2.10) A is §y-open set and A is
NOs_O. set. Hence, A C inty (CINS (A)) and A C ClNS(inthemi(A)) then A S

ATGS V] A_%. By definition 2.1 we get A is My-O. set. (2) suppose that A is NO_O., since
we know NO_O. are N§_0.& NOg_O. by (Remark 2.25). NO_Oset is N65_0. &
N6_O. is 8yp-open set by definition N6_O. and Sy, we get A < A_; and A © A_% then
Ac A_°e U Ag and A is My-0. set.

Proposition 2.20: If A is an My-0.of a (U, Tr(X)) & We get A is §yp-open

78| Page



Researchlet Journal of
Analysis and Inventions

https://reserchjet.academiascience.org

79| Page

ISSN: 2776-0960 Volume 3, Issue 9 Sep., 2022

Proof: Let A be My-0., since Ay = ¢ = A_; = @ = @. Hence, A C A_; up = A_tswe
getA C A_;s- Then A is 6yp-open.
Lemma 2.21: Let (U, Ty (X)) be a N_TS. Then:1- union of arbitrary My-0S.s is My-
0. 2- intersection of arbitrary My-CS.s is My-C.
Proof:
1- {A;,i €1} is collection of My-O.set. We get A; © ClN(Ninte (Ai)) U
inty (NCla (Ai)), such that
U; A; CU; (Cly(N intg(A;))) U inty(NCls(A))
C CIyN intg(U; A;) U inty(NCls(U; A)))
Viel-U;A;is My-0.
2- {A;,1 € I} collection of My-C. . So A; € Cly(Nintg(A;)) N inty(NCls(A))),
when N; A; €n; (Cly(N intg(A)))) N inty(NCls(A;)) < ClyN intg(N; Ap) N
intN(NCla(ni Ai)), Vi € I, Thus N; A; is My-closed.
Remark 2.22: intersection of any two My-0S.s is not My-0.
From above example if U = {1,2,3}, Tr(X) = {x,0, {2}, {3},{2,3}}. Then A = {1,3}
and B = {1,2} are My-open sets. But AN B = {1} not My-open.
Definition 2.23: let A € X. The union of &-pre open sets contained in A is called
the &-pre-interior (Pints (A)).
Theorem 2.24: Let (U, Tg(X)) be N-TS. & A c U. Then the following data are
equivalent:
(1) Ais an My-O0. set.
(2) A = N;intg(A) U NPintg(A)
Proof: (1) — (2). A is My-0S. We get A € Cly(N intg(A)) U inty(N Cls(A)).
Hence by proposition 2.26 and lemma 2.27
Sintg(A) U Pints(A) = (AN Cly(N intg(A)) U (A N inty(N Cls(A))
= AN Cly(Nintg(A)) U inty (N Cls(A)) = A
(2) = (1). Suppose that A = dintg(A) U Pintg(A), then by proposition 2.19 and
lemma 2.21
A = (An Cly(Nintg(A)) N inty(N Cls(A)) < Cly(N intg(A)) U inty (N Cls(A))
Therefore, A is My-O.
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Proposition 2.25: Let (U, Tz(x)) be N-TS. & A C X. Then the data is equal:
1- Ais an My-CS.
2- A = N6 Clg(A) n Np Cls(A).
Proof: 1 - 2. A is My-0S. Get A € Cly(N intg(A)) N inty(N Cl5(A)). Hence, by
proposition 2.26 and lemma 2.27

N§ intg(A) N Pints(A) = (AN Cly(N intg(A)) N (A N inty(N Cls(A))

= AN Cly(Nintg(A)) ninty(N Cls(A)) = A

(2) = (1). Suppose that A = N§ intg(A) N Pintg(A), then by proposition 2.19 and
lemma 2.21
A = (AN Cly(Nintg(A)) N (A N inty(N Cl5(A)) < Cly(Nintg(A)) N
inty (N Cls (A)).Therefore, A is My-O0.
Lemma 2.26: A € (U, Ty(x)), where
(1) My — CI(A) = N& Clg(A) N Np Cl5(A)
(2) My —int(A) = N8 intg(A) U p intg(A).
Theorem 2.27: Let A (U, Tr(x)) . we get 1-A is an My-0S. iff A = My — int(A).
2-Ais an My-CS. iff A = My — CI(A).
Proof: 1- A is an My-0S. Get A = NS intg(A) U Np intg(A) by using lemma 2.26,
get A = My — int(A)
Conversely,A = My — int(A), using lemma 2.21, A = N8 intg(A) U Np intg5(A), by
theorem 2.24, A is My-0S.
2-Ais an My-CS, by theorem 2.24, A = N&intg(A) N Np ints(A) & lemma 2.21
we get A = My — int(A). Conversely, since A = My — int(A).by lemma 2.21, A =
N& intg(A) N Np int5(A) & by theorem 2.24, A is My-CS.
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