

# DETERMINING THE MOST IMPORTANT PHYSICAL VARIABLES FOR VOLLEYBALL PLAYERS IN SPECIALIZED SCHOOLS

ISSN: 2776-0960

Ghanim Habeeb Abdulateef
Basrah Education Directorate, Ministry of Education
ghanmdktwr8@gmail.com

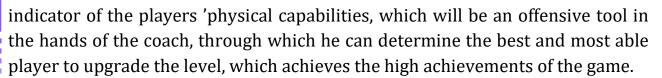
Raed Mohammed Mshatat
Basrah University, College of Physical Education and Sports Sciences
raedmshatat@gmail.com

Mahdi Salih Zaalan
Basrah University, College of Physical Education and Sports Sciences
mahdizaalan@yahoo.com

### **Abstract**

Field of physical education and sports are the human being with all the ingredients, capabilities, capabilities and knowledge, except that scientists and specialists in the field of tests and measurement have invented many and varied tools that are in line with and commensurate with all these variables that concern the same person and this does not mean that they are They reached the ultimate accuracy, and it also does not mean that there are no mistakes, so whatever we get accurate numbers of tests and measurement, the result will differ if we use a more accurate tool and this is due to the development of devices and tools used in tests and measure Preparations and motives as well as to observation errors and experimentation based on self –evaluation, Research community represents the players of specialized schools in volleyball in Iraq for the sports season 2021/2022. The research sample was chosen in the intentional way and they are players of the specialized school in Abi Al -Khaseeb. Recommendations were:

- Using the tests extracted to evaluate and select the players- Extracting standard degrees and levels of the candidate tests from the global analysis- Conducting a similar study to other samples


Keywords: physical variables; volleyball; specialized schools.



### 1-Introduction Research and Importance:

ISSN: 2776-0960

Sports has taken wide steps towards sophistication and progress at all levels and this progress came as a result of the dependence of scientists and specialists the scientific approach and the search for the means that develop the field for athlete and to facilitate modern developments, whether in collective or individual games by relying on other different mathematical sciences that work to support sports training science And among those sciences is the science of tests and standards, which is one of the important and necessary scientific means associated with all sciences in the field of physical education that has a prominent role in the process of proper planning and the continuation of progress, and for the trainer to recognize the possibility of his players, he must conduct tests and measurements to identify the level to find weaknesses and aspects Their strength The axis around which the tests and measurement revolves around the field of physical education and sports are the human being with all the ingredients, capabilities, capabilities and knowledge, except that scientists and specialists in the field of tests and measurement have invented many and varied tools that are in line with and commensurate with all these variables that concern the same person and this does not mean that they are They reached the ultimate accuracy, and it also does not mean that there are no mistakes, so whatever we get accurate numbers of tests and measurement, the result will differ if we use a more accurate tool and this is due to the development of devices and tools used in tests and measure Preparations and motives as well as to observation errors and experimentation based on self-evaluation. This leads us to determine the purpose of the tests and measurement, as we reach numbers that are an indication of the characteristics of individuals according to a good specified rules, and this requires researchers to determine the trait to be tested or measured. Its manifestations so that they become observant, testing and measurement and thus defining the procedures that translate these notes into quantitative amounts that express the amount of the observation characteristic of individuals and know the quantitative differences between them, and because the ability of test devices and measurement is a high amount of stability and honesty and with less than the error is one of the most important practical pillars. The proper and accurate testing and measurement, as specialists have worked hard to innovate and diversify it to cover all areas of the test and measurement to the human characteristics and components. Therefore, the importance of research lies in providing a base for the tests and measurements that would give the true



### 1-2 Research problem:

The physical components are considered one of the most important requirements for the performance of the modern volleyball game that may be the decisive factor in winning matches, especially when it equals or met the level of the skill level of the two teams, given that the level of the physical condition on which the team is considered one of the important reasons that contribute to achieving many Among the victories, the high level of physical fitness of one of the teams enables him to perform a successful sports season, in addition to the team's high fitness increases the coach's confidence in his team and even the coach in most cases try to benefit from it and maintain it. Therefore, the research problem is determined by the following question: What is the most important special fitness components for specialized volleyball school players?

### 1-3 Research objectives:

- 1- Learn about the most important components of special fitness for specialized volleyball school players.
- 2- Learn about the level of performance of the most important fitness components of specialized school players.

### 1-4 Research fields:

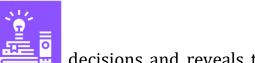
1-4-1 Human field: Volleyball specialized school players in Abi Al -Khaseeb.

1-4-2 spatial field: Specialized school, Abi Al -Khaseeb.

**1-4-3 Time field:** from 4/5/2022 to 21/5/2022.

## 2-physical capabilities of the volleyball game

General physical capabilities are the basic rule and the backbone of sports activities, including the special physical capabilities, which mean the privacy of sports or game practice, and this means that each of the games requires a specific type of physical abilities. Volleyball is one of the group games that is characterized by its small stadium and shortening the period of touching the ball and the number of times it touched and resolves its result by points and not at a specific time, as well as the multiplicity of its movements and its repetition, which


requires the playing players, jumping, rolling, falling and diving, which made it a game that requires special physical abilities that need to be available to the player Which works to improve the level of its skill and planning performance, "the player cannot fully understand and implement plans with high physical abilities" (Akram Zaki: 1996), so focus should be on developing physical qualities that are consistent with the nature of activity or skill because they are necessary to master the skills The movement that achieves the ultimate goal of the learning and training process is the achievement, and (Muhammad Subhi Hassani & Hamdi Abdel Moneim) knew the physical capabilities of volleyball as "the body's ability to adapt to training with intensity, high density and the ability to return to the natural state quickly (Muhammad Subhi & Hamdi Abdel Moneim: 1988)Through the foregoing, the researcher can have her opinion in this field and know the physical capabilities of the volleyball game as the ability to perform motor skills efficiently, vitality and activity without the purification of fatigue and possessing additional energy to prepare for any emergency condition required by training or competition conditions, as it is the important rule Through which the player can move on the field to reach the ball or the right place. The player who has high physical capabilities has the ability to resist frustration and increases the desire to learn and train, exert effort and perseverance and achieve an appropriate level of psychological stability, which enables it to perform the motor skills well and is the basis for reaching the highest levels of sports, so directing the player to the game Which is compatible with its physical capabilities leads to the economy in the training process, investing a lot of time, effort, money, and scientific contribution to investing capabilities and directing them towards the ladder of development to the level of athlete.

Therefore, the physical capabilities of the volleyball game are one of the main pillars to reach high levels, and the development of these capabilities for the volleyball player is an essential element for developing physical efficiency and functional and motor ability for them.

# 3- Research Methodology and Field Procedures

### 3-1 Research Curriculum:

The curriculum is (the scientific path that the researcher takes in solving the problem of his research. The nature of the problem imposes a specific approach to reaching the truth) (Nuri Ibrahim & Rafeh Saleh: 2004). The survey (provides the researcher with information that enables him to analyze, interpret and take



decisions and reveals to him the relationships between the thoughts studied) (Wajih Mahjoub: 2005).

ISSN: 2776-0960

### 3-2 Research Community & Sample:

The research community represents the players of specialized schools in volleyball in Iraq for the sports season 2021/2022. The research sample was chosen in the intentional way and they are players of the specialized school in Abi Al -Khaseeb.

### 3-3 Devices, tools and Means of Collecting Information

- -Arab and foreign sources and references
- Tests and measurement
- Medical balls
- Measurement tapes

Volleyball stadium

- Whistle
- Iron bar and weights
- stop watch.
- -Data Register form

# 3-4 Organizational Research Procedures:

By reviewing the sources and references for tests and measurement, 41 physical tests were identified and these tests represent the various physical capabilities and in order to complete obtaining the most important tests and measurements, the researchers used the global analysis in order to obtain the most accurate tests and measurements that suit the research sample

# 3-5 Main Experience:

After the physical tests were identified, the research sample was reported on the date of conducting the tests for the period from 10-18/5/2022, as five tests were conducted a day except for the last day, 6 tests were conducted. The researchers took into account the sequence of tests in terms of distress and difficulty as well as giving a period Suitable rest between the tests

### 3-6 Statistical Means:

Researchers used the SPSS statistical bag version 2.



### 4- Presenting, Analyzing and Discussing Results:

After completing the collection of data, it was statistically treated by appropriate means, we will present in this chapter the analysis of the results in two phases, the first stage includes what relates to the workforce analysis of the variables (physical, skill, functional and physical), while the second stage includes what relates to standard degrees and logistical forecasting with the resulting manufacturing construction of variables.

## 4 - 1 Statistical description of the candidate physical variables

ISSN: 2776-0960

It is clear from Table (1) that all the values of kurtosis range between  $(\pm 3)$ , and this indicates that the variables are characterized by moderation. "The data tends to moderate distribution, meaning that the test has the ability to show the differences between groups when the sprain extends from (-3) (In the negative to kurtosis (+3) in the positive kurtosis "(Mustafa Hussein: 1999).

Table (1) Shows mathematical medium, standard deviation, and kurtosis for physical tests

| No | Test                                                    | unit of<br>measure | Variable<br>symbol | mathematical<br>medium | standard<br>deviation | kurtosis |
|----|---------------------------------------------------------|--------------------|--------------------|------------------------|-----------------------|----------|
| 1  | Push medical ball (2 kg)                                | meter              | X 1                | 4.8787                 | .79529                | 171      |
| 2  | Push medical ball (3 kg) with hands                     | meter              | X 2                | 3.4493                 | .68229                | 297      |
| 3  | wide jump of stability                                  | meter              | Х3                 | 15062.                 | .33755                | 509      |
| 4  | vertical jump of stability                              | cm                 | X 4                | 20.6000                | 5.01591               | 027      |
| 5  | Sitting from the slavery in (20) seconds                | Repetitions        | 5X                 | 11.2167                | 1.64772               | 454      |
| 6  | Sitting from the numbers for 15 seconds                 | Repetitions        | X 6                | 12.6667                | 1.34878               | 046      |
| 7  | Bending and extending the two men during 15 abundances  | Repetitions        | X 7                | 18.3833                | 2.05922               | .088     |
| 8  | Bend the arms and extend them constantly for 15 seconds | Kg                 | X 8                | 14.1833                | 2.85522               | .582     |
| 9  | Hamstrings with maximum weight                          | second             | X 9                | 32.3333                | 5.40454               | 453      |
| 10 | Attachment from putting arms bending                    | second             | X 10               | 31.8723                | 6.56132               | 099      |
| 11 | Attachment from the stretching of the arms              | second             | X 11               | 35.9577                | 5.61653               | 475      |
| 12 | Bend the arms from the inclined flatness                | Repetitions        | X 12               | 20.4500                | 3.08866               | .021     |
| 13 | Lifting the two legs high                               | second             | X 13               | 25.1623                | 4.84211               | 006      |
| 14 | Run 400 meters                                          | second             | X 14               | 148.7805               | 25.66572              | .063     |
| 15 | Ran 150 meters                                          | second             | X 15               | 103.6577               | 18.44137              | .0501    |

ResearchJet Journal of Analysis and Inventions

ISSN: 2776-0960

| 16 | 30 meters of standing ran                                | second      | X 16 | 47.8271  | 7.65324  | .9341- |
|----|----------------------------------------------------------|-------------|------|----------|----------|--------|
| 17 | Run 20 meters from the high start                        | second      | X 17 | .58584   | 1.21771  | .624   |
| 18 | 30 meters from a moving start                            | second      | X 18 | 3.6131   | 1.43114  | .378   |
| 19 | Running shuttle or cubes transfer race (9 x 4) m         | second      | X 19 | 3.8858   | .86374   | .045   |
| 20 | Nelson's reaction and arm                                | cm          | X 20 | 31.6663  | 5.18493  | 260    |
| 21 | Nelson reaction to the toes                              | cm          | X 21 | 9.5167   | 3.18094  | 021    |
| 22 | Nelson for transitional kinetic response                 | second      | X 22 | 16.7000  | 6.36010  | .095   |
| 23 | side step (10) seconds                                   | Repetitions | X 23 | 4.4570   | .78670   | .274   |
| 24 | Long jump forth (10) seconds                             | Repetitions | X 24 | 10.5000  | 1.69246  | .054   |
| 25 | Zig – zag ran paro way                                   | second      | X 25 | 17.6167  | 1.67829  | 009    |
| 26 | Running (8) way                                          | second      | X 26 | 8.9677   | 1.31304  | .773   |
| 27 | Running around a circle                                  | second      | X 27 | 14.0588  | 2.10217  | 087    |
| 28 | Bend the stem from standing                              | cm          | X 28 | 2.3667   | 1.61000  | 255    |
| 29 | Bend the stem forward from the sitting position long     | cm          | X 29 | 6.7333   | 1.58239  | 047    |
| 30 | Ending the tide of the stem from the lying down position | cm          | X 30 | 7.5667   | 1.59837  | .699   |
| 31 | Bend the stem to succeed standing                        | cm          | X 31 | 16.1610  | 2.80788  | .696   |
| 32 | Lower and side touch                                     | Repetitions | X 32 | 12.3333  | .328332  | .4651  |
| 33 | Standing on the bench                                    |             | X 33 | 32.0000  | 8.93669  | .895   |
| 34 | Standing with the foot is long on the crossbar           | second      | X 34 | 141.1940 | 33.33996 | 135    |
| 35 | Standing with the foot is browsing on the crossbar       | second      | X 35 | 42.2673  | 8.11229  | 204    |
| 36 | Standing with feet long on crossbar                      | second      | X 36 | 24.0103  | 5.60821  | .233   |
| 37 | Standing with the feet browsers on the crossbar          | second      | X 37 | 79.8941  | 18.46583 | 200    |
| 38 | Throwing the ball and receiving it                       | Repetitions | X 38 | 66.6662  | 14.30627 | 398    |
| 39 | Numbered circles                                         | second      | X 39 | 10.3667  | 1.83161  | 088    |
| 40 | Rope                                                     | Repetitions | X 40 | 11.1435  | 2.20965  | 266    |
| 41 | Push medical ball (2 kg)                                 | meter       | X 41 | 3.4000   | 1.16735  | 180    |

### 4 - 1 - 1 Matrix interconnection for physical variables:

The first step that the general analysis begins is the calculation of the correlation transactions between the variables and their recording in a matrix suitable for this type of analysis (Abdel -Gawad Mansi: 1989), and raw grades were used to obtain the interconnections of the variables by the simple link equation, and since the number of members of the sample included. By studying (60) players, the correlation coefficient becomes moral if its value is equal or exceeds (0.325) at a

moral level (0.01), and there is a moral significance if its value is equal or exceeds (0.250) at a moral level (0.05) ( Wadih Yassin: 1999), and Table (12) represents the connection matrix between used measurements, as we notice the following: The correlation matrix (820) correlation laboratories (the Qatari cells were not counted) included (414), a percentage of percentage (50.48%) and (406) a negative correlation with a percentage of (49.51%), while the links indicated morally at the level of (0.01) (51) And a percentage (6.21%), and the correlation transactions indicated morally at the level of (0.05) (120) and a percentage (14.63%), while the non-moral links reached (700) and its percentage (85.36%), and the positive and non-significant ties

Reached (340) and a percentage (48.57%), and negative, non -significantly indicative connections (360) and a percentage (51.41%) table (2) Matrix of interconnection for physical variables.

| 1111 | LCI  | C             | ,,,           | 110  |      | u    | 111  | 10   | 1    | hii  | y    | oic  | aı   | V    | aı   | ıaı  | UI   | U.S. | •    |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   |    |
|------|------|---------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------|-----|--------|---|----|
| 41   | 40   | 39            | 38            | 37   | 36   | 35   | 34   | 33   | 32   | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24   | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   | 15   | 14   | 13   | 12   | 11   | 10   | 9      | 8    | 7    | 6    | 5    | 4    | 3   | 2      | 1 |    |
| 240  | .038 | 223           | .215          | .138 | 158  | 100  | 148  | 002  | .063 | 012  | .007 | .049 | 082  | 133  | .028 | .185 | .052 | .048 | 285  | 178  | 067  | .048 | 061  | 016  | .100 | .039 | .229 | 227  | .129 | 162  | 106  | 061    | 163  | 209  | .296 | 331  | 229  | 046 | .045   | П | 1  |
| 299  | .100 | 045           | .066          | 140  | 125  | 227  | 043  | 127  | .331 | .025 | 134  | .050 | 076  | .157 | 502  | 111  | 110  | 126  | 443  | 143  | 205  | .260 | .063 | .136 | .138 | .069 | .346 | 141  | 170  | 002  | .076 | .153   | .072 | .048 | .307 | .008 | .139 | 108 | П      | П | 2  |
| .093 | 216  | .207          | 079           | .031 | 181  | 038  | .028 | .220 | 220  | .295 | 044  | .252 | 149  | 065  | .038 | .202 | .441 | .466 | .340 | .339 | 145  | 048  | 286  | 031  | 066  | 033  | 064  | .068 | .072 | .136 | .142 | 121    | .116 | .048 | 126  | 062  | 029  | П   | П      | П | 3  |
| 148  | 096  | .110          | .073          | 092  | .166 | 042  | .046 | .042 | 241  | 147  | 054  | .063 | 088  | 067  | 046  | 033  | 064  | 013  | 039  | .025 | .025 | 079  | .016 | .033 | 144  | .054 | .014 | .251 | .085 | 053  | 126  | .216   | .152 | .059 | .038 | .065 |      | П   | П      | П | 4  |
| .061 | 011  | 043           | 024           | .057 | .108 | 069  | .069 | .026 | .033 | .169 | .168 | 015  | .216 | .041 | .159 | 127  | .159 | .136 | .129 | .036 | 101  | 030  | 089  | 123  | 208  | .100 | 246  | .117 | .059 | .075 | .116 | 111    | .050 | .052 | 031  | П    |      | П   | П      | П | 5  |
| 315  | .083 | 280           | 054           | .035 | 135  | .004 | 024  | 039  | 140  | 266  | .074 | .076 | .025 | .143 | 128  | .083 | 339  | 323  | 291  | 168  | .131 | .085 | .272 | .338 | .478 | .239 | .358 | .042 | 147  | 104  | .065 | .146   | 025  | 256  |      |      |      |     | П      | П | 6  |
| .088 | 227  | .062          | 035           | 020  | .035 | 054  | 051  | 089  | .175 | .160 | 040  | .017 | 080  | 029  | 102  | 232  | .023 | 002  | .014 | .059 | .035 | 187  | 060  | 119  | 285  | 059  | 103  | 149  | 007  | .164 | 070  | .161   | .010 |      |      | П    |      | П   | П      | П | 7  |
| 157  | 077  | .104          | 072           | 012  | 093  | 161  | 114  | 088  | .086 | .025 | 156  | .105 | .186 | 037  | 120  | 006  | 110  | 004  | .091 | 222  | 169  | .004 | 039  | .191 | 120  | 033  | .092 | 125  | 038  | .069 | .091 | 009    |      |      |      | П    |      |     | П      | П | 8  |
| 165  | 281  | 064           | 033           | 115  | .190 | 032  | .070 | .152 | 090  | .028 | 007  | 185  | 073  | .087 | 373  | .039 | 284  | 327  | 409  | .030 | .269 | 030  | .129 | .208 | .080 | 008  | 032  | 013  | 091  | .113 | 170  |        |      |      |      | П    |      | П   | П      | П | 9  |
| 048  | 122  | .010          | 068           | 168  | .090 | .033 | 200  | .106 | 218  | 101  | 125  | .000 | 027  | .180 | 162  | .018 | 080  | 093  | .017 | .125 | .073 | .275 | .106 | .261 | .147 | .058 | 014  | 007  | 170  | .048 |      |        |      |      |      |      |      |     |        | П | 10 |
| .093 | 109  | .305          | 088           | 060  | .164 | 124  | 066  | .042 | .028 | .277 | .078 | 174  | .279 | .001 | .094 | 026  | .096 | .179 | .183 | .236 | .062 | 059  | 122  | .188 | 075  | 203  | .037 | .104 | .091 |      |      |        |      |      |      |      |      |     |        | П | 11 |
| .029 | .060 | .263          | .096          | .127 | .091 | 220  | .186 | .146 | 140  | 005  | .164 | 072  | 033  | 330  | .370 | .279 | .379 | .271 | .114 | .160 | 045  | .090 | 220  | 065  | 286  | .119 | 057  | .097 |      |      |      |        |      |      |      | П    |      | П   | П      | П | 12 |
| .081 | 028  | .149          | 133           | .126 | .122 | 011  | .249 | .441 | 266  | 116  | .222 | 056  | .049 | 075  | .363 | .291 | .110 | .198 | .253 | .115 | 015  | 360  | 081  | .131 | .139 | .131 | .186 |      |      |      |      |        |      |      |      | П    |      |     | П      | П | 13 |
| 087  | .139 | $\overline{}$ | $\overline{}$ | 161  | _    | 201  | 134  | .066 | .010 | 049  | 075  |      |      |      | 025  |      | 279  | 178  | 306  | 364  | 076  | 147  | .105 | .335 | .280 | 158  |      |      |      |      |      | $\neg$ |      |      |      |      | Г    |     | $\Box$ | П | 14 |
| 009  | 168  | 139           | .055          | .231 | 071  | .100 | .135 | .027 | .019 | 041  | .004 | .071 | 037  | 033  | 029  | .308 | 005  | .009 | .040 | .073 | .120 | .057 | 133  | 006  | .215 |      |      |      |      |      |      |        |      |      |      |      |      |     |        | П | 15 |
| 150  | .169 | 223           | 205           | 107  | .061 | .358 | .005 | .092 | 258  | 118  | 102  | .094 | .053 | .266 | 087  | .157 | 458  | 399  | 133  | 144  | .068 | .050 | .381 | .470 |      |      |      |      |      |      |      |        |      |      |      |      |      | П   | П      | П | 16 |
| 375  | 162  | 018           | 240           | 225  | .084 | .010 | 017  | 069  | 295  | 191  | 125  | 108  | .050 | .330 | 172  | 084  | 504  | 470  | 226  | 094  | .267 | .003 | .322 |      |      |      |      |      |      |      |      |        |      |      |      | П    |      | П   | П      | П | 17 |
| 211  | 003  | 209           | 063           | 093  | .011 | .121 | 147  | 063  | 224  | 552  | 024  | .158 | .057 | .173 | 203  | 054  | 551  | 606  | 201  | 208  | .261 | 012  |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      | П | 18 |
| 079  | 006  | .112          | .143          | .030 | 305  | 092  | 017  | 149  | .082 | .196 | 069  | .098 | 092  | .115 | 096  | 181  | .197 | .115 | 015  | 053  | .175 |      |      |      |      |      |      |      | П    |      |      |        |      |      |      |      |      |     | П      | П | 19 |
| 152  | 248  | 016           | 284           | 075  | 009  | 115  | 111  | 089  | 245  | 091  | 196  | 030  | 022  | .257 | 197  | 181  | 179  | 275  | 133  | .069 |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      | П   | П      | П | 20 |
| .160 | 295  | .135          | .081          | .013 | .148 | .053 | 101  | .152 | 113  | 007  | .077 | .090 | 095  | 053  | 007  | .194 | .345 | .270 | .284 |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      | П | 21 |
| .367 | 024  | .318          | .084          | .249 | 145  | .033 | .189 | .049 | 017  | .235 | .180 | 008  | .265 | 167  | .525 | .031 | .446 | .494 |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 22 |
| .280 | 129  | .387          | .142          | .239 | 140  | 202  | .109 | .221 | .191 | .454 | .287 | 006  | 077  | 287  | .321 | .209 | .915 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      |   | 23 |
| .297 | 092  | .383          | .187          | .154 | 120  | 181  | .129 | .214 | .189 | .420 | .165 | 058  | 086  | 304  | .292 | .159 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 24 |
| .091 | 110  | .162          | .145          | .248 | .210 | .084 | 047  | .393 | 239  | .057 | .222 | .058 | 146  | 201  | .154 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      |   | 25 |
| .264 | .199 | .154          | .152          | .266 | .089 | .092 | .165 | .227 | 167  | .113 | .429 | 180  | .024 | 300  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      |   | 26 |
| 407  | 304  | .010          | 023           | 120  | 163  | .016 | 146  | 183  | 056  | .030 | 228  | .037 | 270  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      |   | 27 |
| .253 | .203 | 101           | 128           | 009  | .089 | 068  | .307 | 170  | .287 | .004 | 019  | 112  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      | П   |        |   | 28 |
| 030  | 088  | 028           | .016          | .121 | 235  | .087 | 091  | 018  | 180  | 060  | 117  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      |   | 29 |
| .179 | .040 | .165          | .001          | .465 | 012  | 085  | .170 | .228 | 093  | 044  |      |      |      |      |      |      |      | - 1  |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     | П      | П | 30 |
| .229 | .050 | .234          | 035           | .092 | 074  | 026  | .011 | .087 | .258 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 31 |
| .130 | .012 | 144           | .146          | 066  | 008  | 232  | .088 | 245  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 32 |
| .060 | 047  | .298          | .096          | .094 | .270 | .132 | .163 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 33 |
| .078 | .140 | .068          | .102          | 003  | .066 | 028  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 34 |
| .186 | .149 | 110           | .212          | .063 | .091 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 35 |
| .174 | 012  | 008           | .174          | 477  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 36 |
| .019 | .032 | .223          | 029           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 37 |
| .084 | 219  | .083          |               |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 38 |
| .171 | 111  |               |               |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 39 |
| .226 |      |               |               |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        |   | 40 |
|      |      |               |               |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |     |        | П | 41 |
| _    | _    |               |               |      |      | _    |      | _    |      |      |      |      |      | _    |      |      |      |      | _    |      |      | _    |      |      |      |      | _    |      |      |      |      |        |      |      | _    | _    | _    |     | _      |   |    |



ResearchJet Journal of Analysis and Inventions https://reserchjet.academiascience.org

# ISSN: 2776-0960

# Table (3) Show the values of Current roots, the proportion of contrast and the collected contrast

| Factors | Current root values | percentage of contrast | Cariousness & society |
|---------|---------------------|------------------------|-----------------------|
| 1       | 6.529               | 15.924                 | 15.924                |
| 2       | 3.203               | 7.813                  | 23.737                |
| 3       | 2.707               | 6.603                  | 30.340                |
| 4       | 2.5.2               | 6.102                  | 36.442                |
| 5       | 2.173               | 5.300                  | 41.742                |
| 6       | 2.042               | 4.981                  | 46.723                |
| 7       | 1.842               | 4.491                  | 51.215                |
| 8       | 1.639               | 3.999                  | 55.213                |
| 9       | 1.589               | 3.875                  | 59.089                |
| 10      | 1.412               | 3.445                  | 62.533                |
| 11      | 1.312               | 3.199                  | 65.732                |
| 12      | 1.252               | 3.053                  | 86.785                |
| 13      | 1.201               | 2.928                  | 71.713                |
| 14      | 1.128               | 2.752                  | 74.466                |
| 15      | .992                | 2.419                  | 76.884                |
| 16      | .932                | 2.273                  | 79.157                |
| 17      | .913                | 2.228                  | 81.385                |
| 18      | .859                | 2.095                  | 83.481                |
| 19      | .822                | 2.004                  | 85.485                |
| 20      | .709                | 1.728                  | 87.213                |
| 21      | .625                | 1.533                  | 88.746                |
| 22      | .550                | 1.341                  | 90.087                |
| 23      | .462                | 1.126                  | 91.212                |
| 24      | .451                | 1.100                  | 92.313                |
| 25      | .418                | 1.021                  | 93.333                |
| 26      | .369                | .900                   | 94.234                |
| 27      | .360                | .878                   | 95.112                |
| 28      | .301                | .733                   | 95.845                |
| 29      | .286                | .699                   | 96.544                |
| 30      | .252                | .615                   | 97.158                |
| 31      | .218                | .532                   | 97.690                |
| 32      | .185                | .452                   | 98.142                |
| 33      | .162                | .395                   | 98.537                |
| 34      | .152                | .371                   | 98.908                |



| 35 | .142 | .347 | 99.255  |
|----|------|------|---------|
| 36 | .107 | .260 | 99.514  |
| 37 | .061 | .149 | 99.663  |
| 38 | .058 | .141 | 99.804  |
| 39 | .040 | .099 | 99.902  |
| 40 | .024 | .058 | 99.960  |
| 41 | .016 | .040 | 100.000 |

### 4 - 1 - 2 Matrix Factors Before Rotation:

In this study, the researchers used the basic components of a Hotbellkh correct one (Raad Sabri: 1987) The global analysis has concluded fourteen workers, which are direct results of the analysis, and that (direct solutions that we reach from analysis to another leads us to certain factors that may differ the used method) (Safwat Faraj: 1980 )Table (4) shows the factors matrix before rotation

| 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1    |    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
| .036 | .107 | .075 | .061 | 290  | .228 | 275  | .073 | 093  | .107 | .546 | 463  | .020 | 126  | 1  |
| .144 | 204  | .036 | 131  | .121 | 047  | .397 | .024 | .184 | .386 | .313 | 054  | 307  | 410  | 2  |
| .080 | 006  | 103  | .279 | .005 | 077  | .045 | .249 | .283 | 160  | .371 | .361 | .050 | .411 | 3  |
| 020  | .043 | 187  | .097 | .112 | 528  | .208 | 287  | 153  | .306 | 047  | .255 | .125 | 028  | 4  |
| 271  | 294  | .007 | 391  | 058  | 028  | .425 | 236  | .097 | 035  | 297  | .077 | 084  | .220 | 5  |
| .130 | 095  | .060 | 009  | 104  | .175 | .219 | 154  | .199 | .078 | .237 | 236  | .356 | 480  | 6  |
| .047 | 120  | .194 | .105 | .297 | 030  | 058  | 109  | 181  | .041 | 117  | .317 | 384  | .068 | 7  |
| 329  | .307 | .333 | .179 | 100  | 450  | .142 | 079  | .421 | .071 | .011 | .129 | 197  | 072  | 8  |
| 029  | .062 | .125 | .251 | .312 | .267 | .038 | 179  | 315  | .417 | 032  | .346 | .050 | 337  | 9  |
| 229  | 223  | .089 | 280  | 328  | 015  | .164 | .314 | .219 | 218  | .011 | .331 | .145 | 144  | 10 |
| .091 | .021 | .334 | .012 | 018  | .281 | 170  | .090 | .353 | .267 | 243  | .384 | 060  | .201 | 11 |
| 253  | .054 | 095  | .129 | 325  | 078  | 228  | 245  | 102  | .321 | .104 | 067  | .152 | .416 | 12 |
| .167 | 089  | 227  | 057  | .103 | 044  | .170 | 126  | .207 | .234 | 134  | .092 | .595 | .280 | 13 |
| .191 | 103  | 004  | 019  | .055 | 163  | 170  | .243 | .398 | .444 | .204 | 190  | .163 | 344  | 14 |
| 269  | .048 | 028  | .194 | 141  | .260 | .583 | 231  | 143  | 115  | .221 | 075  | .240 | .019 | 15 |
| .071 | .087 | 050  | .078 | .127 | .258 | .186 | .296 | .238 | 130  | .001 | 130  | .525 | 479  | 16 |
| 036  | .235 | .024 | 022  | 141  | .108 | 072  | 012  | .383 | .140 | 086  | .306 | .339 | 543  | 17 |
| .269 | 079  | .273 | 048  | 026  | 185  | 122  | 106  | 075  | 209  | 204  | 004  | .312 | 564  | 18 |
| 213  | .028 | 029  | .006 | .101 | .030 | 033  | .032 | 003  | .088 | .104 | 068  | 296  | 856  | 19 |
| .012 | 055  | 210  | .188 | 135  | .338 | 269  | 309  | 093  | 166  | 107  | .411 | .126 | 288  | 20 |
| .181 | 248  | .086 | .104 | 214  | .155 | .099 | .114 | 245  | 144  | .070 | .475 | .131 | .390 | 21 |
| .149 | .241 | .035 | .009 | 067  | 041  | .064 | 029  | .273 | 354  | 227  | .062 | .081 | .685 | 22 |
| .082 | 042  | 090  | 053  | 041  | .044 | .060 | .029 | .150 | .077 | .307 | .029 | 165  | .840 | 23 |
| .060 | 071  | 186  | 036  | 121  | .081 | .026 | .041 | .007 | .059 | .277 | .048 | 213  | .821 | 24 |
| 201  | 013  | .287 | .162 | 050  | .065 | .108 | .176 | 106  | .195 | .369 | 053  | .530 | .274 | 25 |

<sup>\*</sup> Total values of Current total roots = 41

<sup>\*</sup> Total values Current roots for accepted factors = 30,531

| 0.0             |                | 0                  |
|-----------------|----------------|--------------------|
| hJet Journal of | and Inventions | cademiascience.org |

| -               | 079  | .163 | 053  | 255  | 029  | 032  | 246  | 057  | .076 | 008  | 207  | 311  | .359 | .584 | 26 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|
|                 | .104 | .224 | 162  | 464  | .130 | .182 | .060 | 036  | .130 | 232  | .148 | .390 | 046  | 436  | 27 |
|                 | .119 | .089 | .238 | .305 | 260  | .144 | .224 | 075  | .321 | .021 | 590  | 222  | 108  | .060 | 28 |
|                 | .245 | 160  | .080 | .289 | .096 | 413  | .153 | .046 | .065 | 362  | .353 | .031 | .070 | 056  | 29 |
|                 | .092 | 237  | .334 | 268  | .191 | .128 | 082  | 351  | .011 | .118 | 025  | 232  | .316 | .384 | 30 |
|                 | 248  | .112 | 091  | .037 | .356 | .362 | .052 | .240 | .260 | .095 | .126 | .094 | 362  | .395 | 31 |
| 5               | .203 | .042 | .144 | 045  | 072  | .223 | .257 | .051 | .006 | .194 | 059  | 284  | 690  | .062 | 32 |
| org             | 036  | 062  | 002  | 060  | .222 | .007 | .064 | .204 | 077  | .308 | .117 | .129 | .515 | .321 | 33 |
| academiascience | .268 | .312 | 332  | .140 | .057 | .091 | .329 | 209  | .010 | .223 | 278  | 190  | .118 | .232 | 34 |
| Cle             | 150  | .242 | .059 | 003  | .358 | .010 | .157 | .403 | 302  | 396  | 154  | 110  | .306 | 061  | 35 |
|                 | 094  | 067  | .063 | 056  | 181  | 030  | .051 | .405 | 331  | .485 | 426  | .161 | .215 | .008 | 36 |
| len             | 119  | .003 | .329 | 008  | .311 | .121 | 026  | 479  | .101 | 265  | .285 | 262  | .177 | .331 | 37 |
|                 | .217 | .445 | .228 | 320  | 139  | 149  | .203 | .193 | 484  | .110 | .177 | 121  | 044  | .195 | 38 |
|                 | 002  | .204 | .105 | 113  | .241 | 117  | 194  | 035  | .214 | .183 | .095 | .336 | .064 | .452 | 29 |
| :u)e            | 186  | 208  | 238  | .076 | .191 | 102  | 110  | .183 | .213 | .024 | 284  | 641  | .009 | 025  | 40 |
| serchjet.       | .055 | 191  | .125 | .209 | .152 | .051 | .015 | .340 | 080  | 095  | 372  | 160  | 042  | .502 | 41 |

It is noted from this table that the number of extracted factors, which is based on Current roots, which exceed the correct one is (14) workers.

# 4 - 1 - 3 Matrix Factors after perpendicular recycling of the Results of Tests:

The perpendicular recycling is the most used type of recycling in physical education research, as the axis recycling leads to retaining an angle of (90) degrees between the two axes, and since the existing angle pocket is equal to zero, this means that the relationship between two perpendicular workers is a zero relationship. This means that the factors are extracted with this method of recycling, independent factors or non -intertwined classification categories "(Muhammad Sobhi: 1987). The process of recycling is defined as "recycling the axes about the original data so that the saturation of each variable is only the highest as possible and this rotation makes each worker characterized by the presence of a number of variables characterized by high saturation, which facilitates the development of clear designations for him (Samira Kazem: 1980). For the purpose of reaching the simple global construction of the interpretation of the contrast, the recycling of the factors extracted with the use of perpendicular recycling in the manner proposed by Kaiser in order to raise the value of large stuffs and reduce the value of small saturated through the dimensions of unnecessary axes to reach the best solution and remove the ambiguity that permeates the first analysis and as shown In Table (5).



### 4 - 1 - 4 Conditions for Accepting Physical Factors:

The researcher explained the factors extracted according to the following conditions:-

ISSN: 2776-0960

use the Henry Kaiser to analyze the indicative factors on the basis that the factors indicating the factor that equals its inherent root is one correct at least and above.-. The worker who is satisfied with tests is accepted at least, according to Gilford's Motion  $(\pm 0.3)$  (Thaer Dawood: 1995)

- The worker explains the saturated or more than (± 0.3) (Safwat Faraj: 1980).

### 4-1-5 Interpretation and Name of physical factors

### 4-1-5-1 Interpretation and Name of First Factor:

When looking at Table (5) we find that there are eleven tests that were saturated with the first factor with more than  $(0.3 \pm)$ , achieving (26.82 %), and since the number of tests saturated with the first factor is more than three tests, this worker was accepted as shown in the table (17) Table (5) shows the factors matrix after recycling



Research Jet Journal of Analysis and Inventions of these chiet. academiascience. or a straight of the service o

### -.718 -.025 -.092 -.184 .203 .082 .149 .216 -.170 -.091 .130 .202 .005 1 - 137 -.142 .832 -.118 .098 .094 -.153 .031 2 -.085 .046 -.031 .055 -.086 .043 -.099 .148 -.032 -.037 -.443 -.151 -.109 .119 .043 .347 -.093 -.017 -.076 .230 .500 3 .168 .258 .003 -.267 .095 .291 -.308 -.351 -.135 -.182 -.128 .024 .308 -.154 4 .875 -.030 .177 -.188 .133 -.093 .019 .137 .034 -.037 5 .166 .004 .049 .086 .347 .417 -.069 .003 -.153 .187 .170 .128 .484 .067 -.328 -.387 -.015 .156 6 7 .009 -.091 -.232 -.771 .161 .132 .046 -.191 .007 .096 -.031 .084 -.045 .113 .013 -.079 -.001 -.120 .028 -.111 -.012 .349 -.073 -.044 -.772 .057 -.092 .016 8 .082 - 006 - 369 220 - 095 298 .195 .043 084 -.066 - 124 .132 338 367 9 .123 -.195 .102 .045 -.102 .772 .168 .175 .281 -.246 -.139 .065 .117 .074 10 .278 .020 .334 .389 -.208 .017 .161 .070 .465 .066 .100 .472 .074 -.387 11 .053 .001 -.778 -.084 .255 .074 .128 .161 -.156 -.021 .064 .108 .206 .160 12 -.077 -.449 -.021 -.008 -.168 .217 .358 -.042 .093 .114 -.008 .043 .315 -.016 13 -.539 .275 .119 -.010 -.012 -.010 -.117 -.266 .023 -.195 -.093 -.010 .018 -.145 14 -.047 .854 .075 .022 .112 -.042 .008 .067 -.012 .036 -.046 .002 15 .071 .043 -.004 .099 .224 .440 -.231 -.224 .195 .092 -.068 -.474 .323 .180 .403 -.098 16 -.167 .049 -.022 .248 -.062 -.134 .062 .177 .116 -.191 .175 .378 -.593 -.050 17 -.113 -.004 -.061 -.133 -.043 -.026 -.009 .182 .061 .059 -.069 .023 .731 .04 18 .092 -.269 .063 19 .101 .796 .089 -.124 -.158 -.275 .165 -.069 -.291 -.030 .092 -.192 .015 .091 .106 -.036 -.098 -.217 -.640 .251 -.109 .118 -.257 -.097 -.246 20 -.237 -.106 .096 -.139 .012 .112 -.059 -.064 -.648 -.080 .432 -.196 .177 .153 21 .189 -.033 -.136 -.111 .037 .183 -.125 .299 .229 -.005 .003 -.181 22 .076 .674 23 .104 -.349 .389 .148 .073 .212 .220 .128 -.030 .113 .120 - 062 -.268 .465 .076 .833 -.092 .151 .039 .183 -.013 .246 .107 -.102 .056 .016 24 -.181 .131 .101 -.168 -.303 -.008 .155 -.312 .039 -.019 .158 .183 .204 .596 .185 .092 25 .118 .025 -.048 -.024 -.046 .436 -.164 .240 -.138 -.141 .067 .155 .014 .130 26 .042 -.023 .725 -.017 27 -.062 -.069 -.084 .119 -.003 -.108 .091 .086 -.133 -.067 -.021 .080 .062 .262 -.168 .102 .156 .641 .170 .008 -.172 -.400 .093 -.149 28 .076 -.078 .034 -.063 .006 -.061 .040 .632 .089 .045 .053 .079 .011 -.309 29 .354 .056 -.079 .172 -.333 .134 .049 -.125 .072 -.073 -.413 .039 .271 -.375 30 31 .093 -.030 -.046 .174 -.101 .03 -.141 .236 -.056 .053 .026 .021 -.036 -.800 .212 .018 -.074 .015 -.011 .151 .358 .290 .033 -.007 .235 .149 .608 .286 32 .034 .043 .429 .052 .078 .342 .076 -.402 315 .158 33 -.097 .004 .098 .008 .059 -.279 .130 .090 .010 -.020 -.402 -.024 -.332 -.304 34 -.050 .069 .068 .367 35 -.070 -.074 .157 -.081 .249 .02 -.045 .100 .675 -.058 .092 .016 .196 -.109 -.051 .329 -.063 .024 .212 .137 .364 -.038 .115 -.087 -.105 -.461 .262 .314 36 -.021 .026 -.043 -.012 -.003 .039 .068 .191 -.146 -.066 .102 -.004 .146 .754 37 .049 -.032 -.033 .069 .039 .053 -.118 .026 -.323 .122 -.053 -.056 .030 .742 38 .256 .054 .123 .009 .897 .038 -.094 -.097 .152 .212 -.147 -.140 .162 -.162 39 -.091 .064 -.096 .058 -.215 .010 .274 .114 -.206 .004 .118 .068 -.012 .804 40 -.122 .060 -.147 .010 -.514 .117 .017 .200 .076 .027 -.321 -.239 .044 .239 41

# Table (6) Shows physical Tests and Saturation with first factor

ISSN: 2776-0960

| No | Test number | Test                                                 | saturation |
|----|-------------|------------------------------------------------------|------------|
| 1  | 3           | The long jump of stability                           | 500.0      |
| 2  | 9           | Hamstrings with maximum weight                       | 367.0      |
| 3  | 11          | Attachment from the stretching of the arms           | -0.387     |
| 4  | 29          | Bend the stem from standing                          | -0.309     |
| 5  | 30          | Bend the stem forward from the long sitting position | -0.375     |
| 6  | 31          | Extension of the trunk from lying down               | -0.800     |
| 7  | 34          | Standing on the bench                                | -0.304     |
| 8  | 36          | Standing with the foot is browsing on the crossbar   | 314.0      |
| 9  | 37          | Standing with the feet long on the crossbar          | 754.0      |
| 10 | 38          | Standing with the feet browsers on the crossbar      | 742.0      |
| 11 | 40          | Numbered circles                                     | 809.0      |

From table above and in order to represent this factor in a test, the test of the numbered departments was approved, as it obtained the highest saturation and reached (0.809), so this worker can be named after the corresponding eyes of the eyes and the two legs.

## 4 - 1 - 5 - 2 Interpretation and Name of Second Factor:

When looking at Table (5), we find that there are ten tests that were saturated with the second worker, with more than  $(0.3 \pm)$ , achieving a percentage (24.39 %). Since the number of tests saturated with the second worker is more than three tests, this worker is accepted as shown in the table (7).

Table (7) Shows physical tests and their saturation in the second factor

| No | Test number | Test                                      | saturation |
|----|-------------|-------------------------------------------|------------|
| 1  | 4           | The vertical jump of stability            | 0.308      |
| 2  | 6           | Sitting from the numbers for (15) seconds | -0.328     |
| 3  | 9           | Hamstrings with maximum weight            | 338.0      |
| 4  | 16          | (150) meters                              | 403.0      |
| 5  | 17          | (30) meters of standing                   | -0593      |



| 6  | 18 | (20) meters from the high start | 731.0  |
|----|----|---------------------------------|--------|
| 7  | 26 | Running                         | 0.616  |
| 8  | 32 | Running zig -zag                | 608.0  |
| 9  | 33 | Bend the stem to succeed        | 315.0  |
| 10 | 34 | Lower and side touch            | -0.332 |
| 11 | 4  | Standing on the bench           | 0.308  |

From table above, and in order to represent this worker in a test, the ray test (20) m from the high start was approved, as it obtained the highest saturation and reached (0.731), so this factor can be named the transitional speed factor.

### 4 - 1 - 5 - 3 Interpretation of third factor and name:

When looking at Table (5) we find that there are eight tests that were saturated with the third worker, which exceeds  $(0.3 \pm)$ , achieving (19.51 %), and since the number of tests saturated with the third factor is more than three tests, so this factor is accepted as shown in the table (8).

Table (8) Shows physical tests and their saturation with the third factor

| No | Test number | Test                                          | saturation |
|----|-------------|-----------------------------------------------|------------|
| 1  | 2           | Push medical ball (3) kg with hands           | 832.0      |
| 2  | 11          | Attachment from the stretching of the arms    | 472.0      |
| 3  | 17          | (30) meters of standing                       | 0.378      |
| 4  | 25          | Quartet (10) seconds                          | 596.0      |
| 5  | 28          | Running the circle                            | -0.400     |
| 6  | 33          | Lower and side touch                          | -0.402     |
| 7  | 34          | Standing on the bench                         | 367.0      |
| 8  | 36          | Standing with the broken foot on the crossbar | -0.461     |
| 9  | 2           | push medical ball (3) kg with hands           | 832.0      |
| 10 | 11          | Attachment from the stretching of the arms    | 472.0      |
| 11 | 17          | (30) meters of standing                       | 0.378      |

From table above in order to represent this worker in a test, the test of the payment of medical ball (3) kg adopted with hands from where he got the highest

saturation and reached (0.832), and thus this factor can be named the explosive force factor of the arms and shoulders.

### 4 - 1 - 5 - 4 Interpretation and name of fourth factor:

When looking at Table (5) we find that there are seven tests that were saturated with the fourth worker with more than  $(0.3 \pm)$ , achieving a percentage of (17.07%), and since the number of tests saturated with the fourth worker is more than three tests, so before this worker as shown in the table (9).

Table (9) shows physical tests and their saturation with the fourth factor

| No | Test number | Test                                                      | saturation |
|----|-------------|-----------------------------------------------------------|------------|
| 1  | 6           | Sitting from the slavery within (15) seconds              | 484.0      |
| 2  | 8           | Bend the arms and extend them constantly for (15) seconds | -0.772     |
| 3  | 16          | (150) meters                                              | 323.0      |
| 4  | 21          | Nelson's reaction and arm                                 | 432.0      |
| 5  | 22          | Nelson's reaction to the toes                             | 674.0      |
| 6  | 30          | Bend the torso to the imam from the long sitting position | -0.413     |
| 7  | 41          | Rope                                                      | -0.321     |

From table above and in order to represent this worker in a test, the test of the arms bending and extending them continuously was adopted for 15 seconds, as it obtained the highest saturation and reached (0.772), so this factor can be named the factor of the force that is distinguished by the speed of the arms.

### 4 - 1 - 5 - 5 Interpretation and name of fifth factor:

When looking at Table (5) we find that there are four tests that were saturated with the fifth worker with more than  $(0.3 \pm)$ , achieving a percentage of) 9.75 %), and since the number of tests saturated with the fifth worker is more than three tests, so this worker accepts as shown in the table (10).



Table (10) shows physical tests and their saturation in the fifth factor

| No | Test number | Test                     | saturation |
|----|-------------|--------------------------|------------|
| 1  | 15          | Run (400) meters         | 854.0      |
| 2  | 16          | Run (150) meters         | -0.474     |
| 3  | 27          | Running in the form of 8 | 725.0      |
| 4  | 33          | Lower and side touch     | 342.0      |

From table above, and in order to represent this factor in a test, the rating test (400) meters was adopted, where he obtained the highest saturation and reached (0.854), and thus this factor can be called. With a force of power.

### 4 - 1 - 5- 6 Interpretation and name of sixth factor:

When looking at Table (5) we find that there are five tests that were saturated with the sixth worker with more than  $(0.3 \pm)$ , achieving a percentage of (12.19 %), and since the number of tests saturated with the sixth factor is more than three tests, so this factor is accepted as shown in the table (11).

Table (11) Shows physical tests and their saturation in the six factor

| No | Test number | Test                                           | saturation |
|----|-------------|------------------------------------------------|------------|
| 1  | 3           | The wide jump of stability                     | 0.347      |
| 2  | 21          | Nelson's reaction and arm                      | -0.648     |
| 3  | 23          | Nelson for transitional kinetic response       | 465.0      |
| 4  | 34          | Standing on the bench                          | -0.402     |
| 5  | 35          | Standing with the foot is long on the crossbar | 675.0      |

From table above and in order to represent this worker in a test, the feet standing tested was approved on the crossbar from where he got the highest saturation and reached (0.675), and thus this factor can be called the fixed balance factor.

## 4 - 1 - 5 - 7 Interpretation and name of seventh factor:

When looking at Table (5) we find that there are six tests that were saturated with the seventh worker, with more than  $(0.3 \pm)$ , achieving: (14.63 %), and since the number of tests saturated with the seventh factor is more than three tests, so this factor is accepted as shown in the table (12).



### Table (12) shows physical tests and their saturation in the seventh factor

ISSN: 2776-0960

| No | Test number | Test                                                 | saturation |
|----|-------------|------------------------------------------------------|------------|
| 1  | 4           | The vertical jump of stability                       | -0.351     |
| 2  | 8           | Bend and extend the arms constantly for (15) seconds | 349.0      |
| 3  | 20          | Running shuttle racing cubes (4 x 9) m               | -0.640     |
| 4  | 28          | Running the circle                                   | 641.0      |
| 5  | 29          | Bend the stem from standing                          | 632.0      |
| 6  | 38          | Standing with the two shining feet on the crossbar   | -0.332     |

From table above and in order to represent this worker with a test, the running test on the circle was approved, as it obtained the highest saturation and reached (0.641), and thus this worker can be called the agility factor.

### 4 - 1 - 5 - 8 Interpretation and name of the eighth factor:

When looking at Table (5) we find that there are six tests that were saturated with the eighth worker with more than  $(0.3 \pm)$ , achieving (14.63 %), and since the number of tests saturated with the eighth factor is more than three tests, so this factor is accepted as shown in the table (13).

Table (13) shows physical tests and their saturation in the eighth factor

| No | Test number | Test                                          | saturation |
|----|-------------|-----------------------------------------------|------------|
| 1  | 4           | The vertical jump of stability                | -0.308     |
| 2  | 12          | The inclined to bend the arms                 | -0.778     |
| 3  | 13          | Tension                                       | 358.0      |
| 4  | 14          | Lifting the two men high                      | -0539      |
| 5  | 33          | Lower and side touch                          | 429.0      |
| 6  | 36          | Standing with the broken foot on the crossbar | 364.0      |

From table above, and in order to represent this worker in a test, the tested binding was approved by bending the arms in terms of obtaining the highest saturation and reached (-0.778), and thus this factor can be called the force of force to be in force for the arms.



# 4 - 1 - 5 - 9 Interpretation and name of ninth factor:

When looking at Table (5) we find that there are three tests that were saturated with the ninth worker, with more than  $(0.3 \pm)$ , achieving a percentage of (7.31 %), and since the number of tests that are saturated with the ninth factor is three tests, so this factor is accepted as shown in the table (14)

ISSN: 2776-0960

Table (14) shows physical tests and their saturation in ninth factor

| No | Test number | Test                                     | saturation |
|----|-------------|------------------------------------------|------------|
| 1  | 1           | Push medical ball (2) kg                 | -0.718     |
| 2  | 10          | Attachment from putting the arms bending | 772.0      |
| 3  | 25          | Quartet (10) seconds                     | -0.313     |

From table above, and in order to represent this worker in a test, the attachment test was adopted from the status of the arms bending, as it obtained the highest saturation and reached ((0.772 and thus this worker can be named the force of the force of the arms.

### 4 - 1 - 5- 10 Interpretation and name of tenth factor:

When looking at Table (5) we find that there are three tests that were saturated with the tenth worker, with more than  $(0.3 \pm)$ , achieving a percentage of (7.31 %), and since the number of tests saturated with the tenth factor is three tests, so this worker accepts as shown in the table (15).

Table (15) shows physical tests and their saturation with the tenth factor

| No | Test number | Test                                                      | saturation |
|----|-------------|-----------------------------------------------------------|------------|
| 1  | 30          | Bend the stem to the front from the sitting position long | -0.333     |
| 2  | 39          | Throwing and receiving the ball                           | 897.0      |
| 3  | 41          | Rope                                                      | -0.514     |

From table above and in order to represent this worker in a test, the test of throwing the ball and receiving it was approved in terms of obtaining the highest saturation and reached (0.897), and thus this worker can be named after the corresponding eyes and hands.



### 4 - 1 - 5 - 11 Interpretation and name of eleventh factor:

ISSN: 2776-0960

When looking at Table (5) we find that there are four tests that were saturated with the eleventh worker, with more than  $(0.3 \pm)$ , achieving a percentage of (9.75 %), and since the number of tests saturated with the eleventh factor is more than three tests, so this factor is accepted as shown in the table (16).

Table (16) shows physical tests and their saturation with the eleventh factor

| No | Test number | Test                                           | saturation |
|----|-------------|------------------------------------------------|------------|
| 1  | 3           | The long jump of stability                     | -0.443     |
| 2  | 7           | Bend the legs and extend them for (15) seconds | -0.771     |
| 3  | 16          | (150) meters                                   | 440.0      |
| 4  | 23          | Nelson for transitional kinetic response       | 389.0      |

In light of the foregoing, and in order to represent this worker in a test, the test of the two legs and their extension was approved within (15) seconds, where he obtained the highest saturation and reached (-0.771), and thus this factor can be called the strength of the speed of the speed of the two men.

## 4 - 1 - 5 - 12 Interpretation of twelfth factor and name:

When looking at Table (5) we find that there are six tests that were saturated with the twelfth worker, with more than  $(0.3 \pm)$ , achieving a percentage of (14.63 %), and since the number of tests saturated with the twelfth factor is more than three tests, so this factor is accepted as shown in the table (17).

Table (17) shows physical tests and their saturation in twelfth factor

| No | Test number | Test                                       | saturation |
|----|-------------|--------------------------------------------|------------|
| 1  | 11          | Attachment from the stretching of the arms | 0.334      |
| 2  | 19          | Hamstrings with maximum weight once        | -0.369     |
| 3  | 23          | Nelson for transitional kinetic response   | -0.349     |
| 4  | 24          | The side step (10) seconds                 | 0.833      |
| 5  | 25          | Quartet (10) seconds                       | -0.303     |
| 6  | 32          | Bend the stem to succeed standing          | 0.358      |



From table above and in order to represent this worker in a test, the side step test was adopted (10) seconds, as he obtained the highest saturation and reached (0.833), and thus this worker can be called the agility factor.

### 4 - 1 - 5 - 13 Interpretation of the thirteenth factor and name:

When looking at Table (5) we find that there are five tests that were saturated with the thirteenth worker with more than  $(0.3 \pm)$ , achieving a percentage of (12.19 %), and since the number of tests saturated with the thirteenth factor is more than three tests, so this factor is accepted as shown in the table (18).

Table (18) shows physical tests and their satisfaction with the thirteenth factor

| No | Test number | Test                                               | saturation |
|----|-------------|----------------------------------------------------|------------|
| 1  | 6           | Sitting from the slavery within (15) seconds       | 417.0      |
| 2  | 13          | Tension                                            | -0.449     |
| 3  | 19          | (30) meters from the moving start                  | 796.0      |
| 4  | 26          | Running zig-zag                                    | 436.0      |
| 5  | 36          | Standing with the foot is browsing on the crossbar | 329.0      |

From table above and in order to represent this worker in a test, the running test (30) meters was adopted from a moving start, where he obtained the highest saturation and reached (0.796), so this factor can be named the transitional speed factor. Fitness is characterized by the compound character due to its association with other physical qualities on the one hand and the art of performance on the other hand, and agility is defined as the ability to change the conditions of the body, its speed, or its directions on the ground or in the air accurately, smoothly and a correct timing (Majid Ali: 2009).

## 4 - 1 - 5- 14 Interpretation of the fourteenth factor and name:

When looking at Table (5) we find that there are three tests that were saturated with the fourteenth worker with more than  $(0.3 \pm)$ , achieving a percentage of (7.31 %), and since the number of tests saturated with the fourteenth worker is three tests, so this worker accepts as shown in the table (19).



Table (19) shows physical tests and their saturation with the fourteenth factor

| No | Test number | Test                                                      | saturation |
|----|-------------|-----------------------------------------------------------|------------|
| 1  | 5           | Sitting from the slavery in (20)                          | 0.875      |
| 2  | 6           | Sitting from the numbers for (15) seconds                 | 347.0      |
| 3  | 30          | Bend the torso to the imam from the long sitting position | 354.0      |
| 11 | 5           | Sitting from the slavery in (20)                          | 0.875      |

In light of the foregoing, and in order to represent this worker with a test, the seating test of the slavery was adopted in (20) seconds, where he obtained the highest saturation and reached (0.875), and thus this factor can be named the strength of the speed of the stomach speed.

# 4 - 1 - 6 final physical tests from the global analysis Table (20) Shows the nominated physical tests from the global analysis

| No | physical tests                                               |
|----|--------------------------------------------------------------|
| 1  | Numbered circles                                             |
| 2  | Run (20) from the high start                                 |
| 3  | push medical ball (3) kg with hands                          |
| 4  | Bend the arms and constantly extend them within (15) seconds |
| 5  | Run (400) meters                                             |
| 6  | Standing the foot long on the crossbar                       |
| 7  | Running around a circle                                      |
| 8  | The inclined to bend the arms                                |
| 9  | Attachment from putting the arms bending                     |
| 10 | Throw and receive the ball                                   |
| 11 | Bend the two men and extend them within (15) seconds         |
| 12 | The side step (15) seconds                                   |
| 13 | (30) meters from a moving start                              |
| 14 | Sitting from the slavery within (20) seconds                 |



### 5 - Conclusions & Recommendations

### 5 - 1 Conclusions:

In light of the study carried out by the researchers, he was able to reach the following conclusions:-

ISSN: 2776-0960

1- The correlation of the correlation of physical test variables has been analyzed, as (14) physical tests were reached for selection, which are:-

Test the numbered circles, which obtained saturation (. 809) to measure the consensus of the eyes and the two legs

- Righting test (20) m from the high start, which obtained saturation (. 731) to measure the transitional speed.
- Test of the pushing of the medical ball (3) kg, which obtained saturation (.832) to measure the explosive force of the arms.
- Test the arms bending and constantly extending them during (15) Sec, which obtained saturation (.
- Righting test (400) m, which obtained saturation (. 854) to measure the power table.
- Long standing test on the crossbar, which obtained a saturation (. 675) to measure the fixed balance.
- Running test around a circle that obtained saturation (. 641) to measure fitness.
- Test the arms bending from the oblique flattening, which obtained saturation (.
- Attachment test from the putting of the arms, which obtained a saturation (.772) to measure the force of the arms.
- Throwing and receiving the ball, which obtained saturation (. 897) to measure the consensus of the eye and the hand.
- Test the two men bending and extending them during (15) Sec which obtained saturation (.
- Step Test (10) Sec which obtained saturation (. 833) to measure fitness.
- Righting test (30) m from the moving start, which obtained saturation (. 796) to measure the transitional speed.
- Sitting from the slavery during (20) Sec which obtained saturation (. 875) to measure the strength of the stomach speed.

### 5-2 Recommendations:

- Using the tests extracted to evaluate and select the players
- Extracting standard degrees and levels of the candidate tests from the global analysis

- Conducting a similar study to other samples

### **References:**

1- Akram Zaki Khatiba; (1996) Modern Volleyball Encyclopedia, 1st floor: (Amman, Dar Al -Fikr for Printing, Publishing and Distribution, p. 256.

ISSN: 2776-0960

- 2- Muhammad Subhi Hassani & Hamdi Abdel Moneim; (1988) Scientific foundations for volleyball and methods of measurement and evaluation (physical, skill, cognitive, psychological, analytical), 1st floor: (Cairo, Al -Kitab Center for Publishing, p. 22.
- 3- Nuri Ibrahim Al-Shouk & Rafeh Saleh Fathi: (2004) The Researcher's Research Writing Directory in Physical Education, Baghdad, Al-Shuhad Press, p. 51.
- 4- Wajih Mahjoub (2005) Origins of Scientific Research and Critics, 2nd edition, Amman, Dar Al-Maarajah for Publishing and Distribution, p. 243.
- 5- Mustafa Hussein Bahi (1999) Applied Statistics in the field of educational, psychological, social and sports research, 1st edition, Cairo, Al-Kitab Publishing Center, , p. 83.
- 6- Wadih Yassin Al-Tikriti & Hassan Mohamed Al-Obaidi (1999) Statistical Applications and Computer Incards in Physical Education Research, Mosul, Dar Al-Kutub for Printing and Publishing, p. 435.
- 7- Abd al -Jawad Mansi : (1989) Statistics and Measurement in Education and Psychology, Cairo, University Knowledge House, p. 408.
- 8- Muhammad Subhi Hassanein: (1987) Methods of building and legalizing tests and standards in education for physical, 2nd edition, Cairo, Dar Al-Fikr Al-Arabi, p. 87.
- 9- Raad Sabri Musa & (et al.): (1987) Statistical methods, Baghdad, Ministry of Planning, Central Bureau of Statistics, Training and Statistical Research Center,, p. 250.
- 10- Safwat Faraj: (1980) The general analysis of behavioral sciences, Cairo, Dar Al-Fikr Al-Arabi, , p. 209.
- 11- Samira Kazem Al-Shamaa: (1980) Industry areas in Iraq, Baghdad, Dar Al-Rashid Publishing, , p. 35
- 12- Thaer Dawood Salman: (1995) Design and legalization of a test battery to measure the skill side of young basketball players with ages 17-18 years, PhD thesis, Faculty of Physical Education, Basra University, p. 59
- 13- Majid Ali Musa: (2009) Modern Sports Training, 1st edition, Al-Nakheel Press, Basra, 2009, pp. 135-136.